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SUMMARY

A new, fast, non-iterative version of the 'Wall Pressure Signature
Method'' is described and used to determine blockage and angle-of-attack wind
tunnel corrections for highly-powered jet-flap models. The correction method
is complemented by the application of tangential blowing at the tunnel floor
to suppress flow breakdown there, using feedback from measured floor pressures.
This tangential blowing technique was substantiated by subsequent flow invest-
igations using an LV.

The basic tests on an unswept, knee-blown, jet flapped wing were supple-
mented to include the effects of slat-removal, sweep and the addition of
unflapped tips. €, values were varied from 0 to 10 and free-air 's in excess
of 18 were measured in some cases. Application of the new methods yielded
corrected data which agreed with corresponding large tunnel "free air" results
to within the limits of experimental accuracy ir almost all cases. A program
listing is provided, with sample cases.

The present report is the first of two parts: Part Two describes an
extension to include jet-in-crossflow effects. A copy of the present report
is retained in the Lockhend-Georgia Company Engineering Report Files. The
identifying number is [ REYERQ16AK.
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1.0 INTRODUCTION

1.1 Background

in any wind tunnel test, the basic requirement is to create a flow field
around a test mcdel which properly represents either free air conditions or,
on occasion, the condition of flight near the ground. For conventional models,
nominal tunnel velocity must be corrected in magnitude and direction to com-
pensate for the presence of the tunnel walls. For V/STOL models these
corrections are likely to be large enough to require special correction
methods and the further complication arises that separation may be induced on
a tunnel surface. If an in-ground condition is to be simulated the relative
ground motion must also be considered: in flight, this motion will usually
reduce the extent of a ground separation (if present) but will not necess-
arily eliminate iv.

Within the above terms-of-reference, three distinct but related test
needs may be identified:

(2) the need for improved correction methods, particulariy for
blockage effects, including the effects of highly three
dimensional powered flows.

{b) the need to understand and either correct for or remove the
effects of tunnel flow breakdown during tests to determine free
air data.

and (c¢) The need firstly to understand and then to properly simulate
the effects of ground motion during ground effects testina.

References 1 through 10 represent some ten year's work at Lockheed~
Georgia on the above questions. As a result of this and the present work,
the flow physics is now well understood and practical solutions are almost
complete. To place the present work in perspective a review is presented
below covering blockage experiments, software development, angle-of-attack
correction and ground or tunnel floor separation phenomena as studied at
Lockheed-Georgia during the 1970's.

Experiments on Wind Tunnel Blockage

The history of wall-pressure based tunnel blockage correction research
at Lockheed is represented chronologically by References 5 through 10, or
parts of these.

When conducring an investigation of ground effects on a knee-blown
flap model (Ref 2) a substantial static pressure drop was noticed between
the test section entry and the tunnel breather slots at the test section
exit. The calibrated velocity, at the test section entry, was evidently
significantly below the effective value at the model implying that the
conventionaily calculated model coefficients were too high. An obvious "Fix'
was to define a model station reference static pressure eqgual to the mean
of the test section entry and exit values.
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This approach was applied to pressure data from rew tests on a knee-
blown flap model in the 30" x 42" tunnel and comparisons were made with
datum tests in the Lockheed 16%' x 234! tunnel (Ref 5). In the absence of

- balance data, C -values were estimated from pressure integrations. Only a
basic, straight winged, slats-on configuration was tested. These pilot
- studies showed significantiy improJed €| correlations, between tunneis,
: when the new reference static correction procedure was employed.

A fuselage containing a three-component balance and optional, unflapped c !
wing tip extensions were added to the knee-blown flap model for the next test
series (Ref 6). Test conducted in the 30" x 42" tunmnel and datum tests in

- the NASA/AAMRDL 7' x 10' tunnel included wske filow as well as balance measure-~
ments., With the slats fitted, the flow measurements showed little wake dis-
tortion, relative to a corrected mainstream vactor, and good force and moment
correlations were obtained. However, with the slats removed the drag behavior "
in the small tunnel was totally different from that in the large tunnel,

though the lift performance was comparable. Slats-off flow data were nol L
taken but analysis of the drag data suggested that flow breakdown in the
short test section of the small tunrel interacted in some way with the
separated main wing flow and caused the et sheet to separate prematurely ]
from the flap upper surface. In addition to this problem, it was recognized
in Reference 6 that the revised reference static method responded primarily
to wake blockage and was inherently incapable of responding to solid or
separation-bubble-induced blockage.

& il I e

Reference 7 describes early Lockti~ed-funded work on what has become
known as the ''wall pressure signature method." As the name indicates, a
series of pressures along the test section length is used to characterize
the tunnel flow. Analysis of this "signature'' yields not only individual
estimates of solid/bubble and wake blockage but also corresponding axial
velocity interference increments anywhere in the test section. The feas-
ibility of the approach was established by means of tests on normal flat
plates of various sizes tested in the Lockheed 164' x 23%' tunnel. The
\\ data of Reference 7 were analyzed entirely by 'hand' methods, using look-up =

charts: it was a considerable time before the corresponding computerized
version was ready for 'production' use.

From the work of References 6 and 7 it became clear that the lL-foot
test section length of the 30 < 42" tunnel was insufficient. The tunne’ .
test section was therefore reworked to 7-foot toial length. Rows of
permanent wall pressure orifices wzre edded.

e s

Reference 8 closely parallels Reference 6 but describes tests on a
swept wing variant of the knee-blcwn-flco model. The straight winged model
was retested, in the longer test section, and the 'drag flip back' anomaiy

— disappeared. The correlations for the straight wing improved and those tor
the swept wing were good for attached-flow cases. Wall pressure signatures
were measured but were not used for correction purposes. Nonetheless, they

. gave important insight into tunnel interference and tunnel flow breakdown

= phenomena. §
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Other, Lockheed IRAD-sponsored, tests at this time included work on
spheres of two sizes in two tunnels and on flat plate wings of four sizes
tested in the {now) 30" x 43" tunnel. Automation of the wall pressure sign-
ature method was completed in 1977 and its usefulness in application to auto-
mobile testing in the 161" x 23%' tunnel was becoming appreciated. However,
it could be used only off-line because its operation was somewhat slow.

Reference § collects together most of the previous data and analyzes
it using the aucomated program, which it also documents. Data for nornal
flat plates, spheres, and idealized automobile, flat-plate wings and the
unswept knee-blown flap model are all included.

Software Development

The initial objective of the computer program is to locate a source-
sink pair, representing solid/bubble blockage and a wake-source, all on the
tunnel axis, and determine their strengths so as to provide the best curve
fit to the observed wall pressure signatures. This is essentially an in-
verse problem and the solution must be found iteratively with regard to the
source and sink locations. A developed version of the previous look-up charts
(Reference 7) is used, in tabular form, during this iteration. Having
solved this inverse problem, the determination of tunnel interference effects
is straightforward.

The period from 197> to 1978 saw substantial improvements in program
capability with regard to increased robustness and reduced run time. It
was found that a good deal of data reviewing is required to reject 'bad'
points, to interpret unusually shaped signatures properlty and to achieve
the best theoretical match to observed data. The earliest program ran
about 30-seconds per data point, which is totally unacceptable for on-Tine
use. The Reference 9 program requires about 3-seconds on a minicomputer and
is much more robust than the early programs. A practical limit appears to
have been reached in development of the method in its iterative form.

Reference 10 describes the most recent Lockheed research on the wall
pressure signature method. An alternative approach to the iterative method
is introduced in which multiple sources or sinks are employed at fixed
positions. This method avoids iteration and a constant influence matrix
may be used. A least-squares fit to the wall pressure signature may be
achieved, when using the new program, by choosing fewer singularities than
pressure data points. The direct method is an order-of-magnitude faster
than the best iterative program. It can also accommodate unusually-shaped
wall signatures for which the previous method must make approximations.

Angle-of-Attack Corrections

The sensitivity to angle-of-attack correction is either zero or weak
in most of the correlations described above. 1t has been found sufficient
to employ the methods of Williams and Butler (Reference 11) for the powered
mode! tests or the classical, Glauert correction as quoted in Reference 12
in other cases. However as is pointed out in Reference 10, the development
of a wall pressure signature method for angle-of-attack is desirable to
afford consistency with the blockage corrections.

Referenc 9 describes intitial studies of angle-of-attack correction
by the wall pres.ire signature method. The general feasibility is estab-
lished and a number of sensitivity studies are described. However, only
limited examples are quoted which involve test data.

3
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Ground or Tumel-Floor Separation

References 1 through 6 deal predominantly with ground simglation in
the wind tunnel. It is clear the the most realistic simulation should
include the ground motion, using a moving belt or some alternative means
of controlling the flow immediately above the tunnel floor. It is shown
in Reference 3 that tangential blowing along the qground, from just ahead
of the model, may be used successfuily to simulate a moving belt. The
criterion for blowing quantity, based upon the physics of the flow, is
that skin friction at the ground shall be positive or zero everywhere.
Reference 6 describes the development of a ground blowing system which
employs feedback from ground skin friction sensors to determine the level
of tangential biowing.

A blowing rig designed for ground simulation by tangential blowing
(e.g. Ref. 4) may also be used to control tunnel flow breakdown. However,
there is an important distinction between the two applications. 1t is
<hown in Reference 3 that, even with a moving qround, a spanwise vortex
may be trapped between the wing ard the ground. The appearance of a floor
vortex during center—tunnel testing heralds the aonset of tunnel flow break-
down and can never be a ''correct' fiow conditior. We shall see later in
this report that such a vortex can distort the flow seriouslty in the
vicinity of the model and render the data uncorrectable. When used during
center tunnel testing, we shall see that ground blowing should be used to
destroy the floor vortex, if it occurs.

1.2 Some Thecretical Considerations

Seleo*ion of Flow Model

It is possible, if only in principle, to exploit the non-iterative,
matrix approach described above by defining three-dimensional arrays of
sources and vortices clustered in the vicinity of the model and its wake
and s0iving for boundary conditions derived from wall pressures. (tn the
present work, the normal velocity condition is satisfied by using an approp-
riate image system.) However, such an approach would almost certainly
encounter matrix conditioning problems.

The number of unknown source or vortex strengths is reduced greatly if
knowledge of the model geometry - location, wing sweep, angle-of-attack
etc - is exploited. This relieves the matrix conditioning problem signifi-
cantly thougn, as indicated in Reference 10, some difficulties remain, The
problem becomes more one of limiting the number of influence matrices which
must be held ready for use.

Even after reducing the number of singularities, there are constraints
on their geometry which must be recognized. For example, if measured axial
velocity at the tunnel wall mid lLaight is used as a boundary condition, the
strength of a vortex at mid height can not be determined because it cannot
affect the boundary points' axial velocity. Sources Q4 and Q3 or vortices
1 and Ty placed at altitudes th cannot be resolved separately because
the boundary velocity depends only upon (Qy + Q) and (y - rs) respectively
For this reason the inclusion of a vortex on the centerline or the inclusion
of scurces or vortices equally spacred above and below the centerline results
in a singular influence matrix for mid-wall orifice locations. These

considerations suggest some necessary rules for valid singularity arrangements.
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Other rules are probably needed to complete a set which is also sufficient:
further work is needed to identify these.

Untqueness of the Interference Flow Field

The constraints above reduce the permissible number of singularities,
they restrict their location to the general area of the model and it's wake,
they introduce some geometric properties related to the model itself and they
introduce certain restrictions intended to avoid singular influence matrices.
Fven within these constraints a considerable number of possible arrangements
of singularities remains, particularly with regard to their number and
spacing. The details of the configuration selected will affect the sing-
ularity strengths but the implications in relation to the calculated inter-
ference velocities are not immediately clear.

Experience suggests that the interference flow field may be relatively
insensitive to the fine details of the flow model. For example, a study
is reported in Reference 10 in which the original source-source-sink,
variable geometry formulation of the present problem was set up in non-linear
equation form. A range of solutions was found, with widely varying geometry,
and an interference velocity profile along the tunnel axis was calculated for
each. Though the interference curve certainly was not unique, the spread
between the individual solutions was acceptable in engineering terms.

Imterpretation of the Interference Flow Field

Having solved the inverse problem, as indicated previously, and having
defined interference velocities at locations of interest on the model, what
remains is to determine their effects. This subject is discussed in detail
in Reference 10. If the maximum benefit is derived from the wall pressure
signature method, wind tunnel models may be sufficiently large that inter-
ference gradient corrections need to be considercd. 1f the pressure
gradients are nearly constant it usually will be possible to use standard
gradient correction ("ouoyancy') methods. |f only surface pressure measure-
ments are to be corrected, a '"'local mainstream' concept has been found to
be effective in correcting for blockage (Ref 10). Beyond these, a method
must be found for distributing the forces over the modei so that moment
corrections, in particular, may be made on the basis of the local conditions
which apply to individual model components. Though an experimental approach
is a candidate for this, and is used occasionaily, a better choice is
probably a simple analytical model of the configuration concerned.

Once a high-induced-gradient field has been defined - by whatever
method - it is highly desirable to seek out and exploit such flow models
as are available for the confiquration concerned. A close interface with
the ""‘customer' is likely to be very beneficial in this regard.

Impingement Cases for Powered Flows

Even if the vortex which occurs ahead of floor impingement is removed by
floor blow:=o boundary layer control, as described in sub-section 1.1, there
may stiili be sufficient flow distortion to make data correction difficolt,
if "ot impossible. However, with the floor vortex removed, there is at least
a reasonzble change of defining the interference flow field over the model
volume.

. .
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The calculation of the interference flow field for an impinging jet
includec the determination of the effects of truncation as well as the effects
of images. The vortex pair which might represent an impinging jet-in-
crossflow bends sharply at the floor. To complete the interference catculation
a contribution from the '"missing'' part of the plume downstream of this, must
be added to the image effects corresponding to the section of plume within
the tunnel. For flow continuity a further source effect, at the tunnel floor
itself, may be needed to provide an appropriate envelope around the impinged
jet fluid there.

With the interference flow field defined, a final consideration concerns
jet path distortion. To first order, this will be a jet velocity ratio
effect which should be adequately accommodated when the corrected mainstream
velocity is defined at the model location. As the plume of an impinging jet
is likely to be aerodynamically gt iff' the distortion due to gradients bet -
ween the model and the tunnel floor are likely to be insignificant to within
a short distance from impingement.

1.3 Layout of the Present Report

This is the first volume of a two-part report. The present volume deals
with conventional, winged configurations and includes computer program list-

ings relevant to the baseline, wall pressure signature program. It should
be noted that the baseline program is not restricted to unpowered cases: it
will accommodate jet-flapped configurations, for example. Volume t1 deals

with the special topic of jet-in-crossflow modeling, as it affects wall
pressure signature analyses.

Section 2 of the present report comprises a description of the new,
direct version of the wall pressure signature method. This repeats some
Reference 10 material, but this is included for ready refevence in connection
with the corresponding program listings.

Test hardware for recent knee-blown-flap (KBF) model tests is described
in Section 3: jet-in-crossflow hardware details may be found in Volume 11.
The application of tangential biowing at the tunnel floor in KBF tests is
described in Section k.

Most of Section § comprises a presentation of results for several
configurations of the knee-blown flap model and shows the correlations
between 30" x 43" tunnel corrected data and constraint-free data. The main
text of this report is completed by Discussion, Conclusion and References
in Sections 6, 7 and 8, respectively. The Appendices include the appropriate
program listings, user guides and data tables.

The present report is intended to complement and update Reference 9
which iacludes more detail on how the basic wall pressure signature method
works together with practical details concerning its implementation.
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2.0 THE GENERALIZED METHOD FOR WALL PRESSURE SIGNATURE ANALYSIS

2.1 Review

Reference 7 includes the original formulation of the problem of
determining wind tunnel blockage via the solution of an inverse problem,
starting with measured wall pressures. The general approach is to find the
strengths of an array of line sources and sinks, located on the horizontal
center plane of the tunnel, which when acting with the appropriate wall image
set, produces the observed wall pressures. Having solved this inverse pro-
blem, tunnel blockage is determined by considering the image set acting alone.
This approach is retained for the present work. An iterative solution which
has been the standard approach to date is described, in its most developed
form, in Reference 10. The more recent generalized, or matrix solution is
also described in Reference 10 and sensitivity studies, to source or vortex
span, phase etc. are also described.

The algorithms for infiuence coefficient calculations were relatively
straightforward in the Reference 7 and 10 programs, since only spanwise line
sources were involved. However the geometric requirements for swept wing
and for jet-in-crossflow models are more demanding and a generalized, skewed,
line-singularity algorithm has been prepared. The formulation for sources,
horseshoe vortices and doublets and the corresponding algorithms are docu-
mented in Reference 1k,

In the sub-section which follows, some of the more important character-
istics of the matrix approach will be reviewed. Some recent findings con-
cerning the choice of pressure sensing points wiil be discussed in sub-
section 2.3. The effects of model offset and sweep, on measured signatures
are reviewed in subsection 2.4 and a least-squares formulation of the basic
problem is given in sub-section 2.5. The section concludes with g mathe-
matical description of the generalized method.

2.2 Properties of the Influence Matrices and Their Inverses.

Figure 2.1 shows influence matrices for five-element line-source and
five-element horseshoe vortex systems, The source matrices are, in fact,
the sum of two others, corresponding to the direct influence of the line
sources (an antisymmetric matrix) and the influence of matching, but opposite-
sign, sources situated far downstream which are needed to satisfy continuity.
Every element in the downstream source matrix equals 0.5. Each of the
constituent matrices is singular, but their sum is not. Inspection of the
tunnel floor and roof source coefficients (Figure 2.1) shows that, to avoid
repeated rows in the influence matrix (which would make it singular) mean
values of supervelocity increment must be determined from floor and roof
orifices having the same x-location. However, sidewall data will generally
be used for blockage estimation.

The vortex influence coefficients include vertical velocity components
at the tunnel sidewalls, as denoted by arrows in the upper right portion of
Figure 2.1. Though these components could, in principle, be measured and
used to determine vortex strengths this is less practical than measuring
solely static pressures. However, we shall see later that these velocities
may influence pressures significantly and hence may represent a lift-dependent




interference upon the blockage signature in some cases. The roof cnd
floor vortex coefficients are of opposite sign, at a given x-location.
when solving for lift interference, differences must be taken between
sypervelocity data determined at corresponding roof and floor orifice
focations.

Figure 2.2 shows a wall influence matrix for sources (upper left) and a
roof/floor influence matrix for vortices {upper right) together with their
respective inverses, below them. In both cases the inverses inciude alier-
nating-sign clements, indicating that the influence matrices are ili-
conditioned. Though it has been demonstrated that correct singularity
strengths are returned from computer-generated wall pressure signatures, it
may be anticipated that, for 'noisy',real data, oscillating singularity
strengths will be returned. Application of the method to tunnel data con-
firms this (see Ref. 10).

To complete a tunnel interference calculation, the source OV vortex
effects at the tunnel centerline are determined, with the centrat system
removed. This step may be combined with the previous one by multiplying
the center-tunnel interference matrix by the inverse matrix already deter-
mined. The product matrices are shown in the lower part of Figure 2.2. As
before, the elemen's have alternating signs. Nonetheless, it is found that
smooth interference distributions are generally obtained from experimental

data.

Figure 2.3 shows results from pilot tests on an interim program,
designated "'MATCH', which employs the new matrix method. Corresponding
results are also shown using the previous iterative program. The wall
pressure signature fitted by '"MATCH' passes through every experimental
point: the iteratively obtained signature must approximate because it has
fewer degrees of freedom. Though the source-sink geometries differ con-
siderably, the two methods predict remarkably similar distributions of
interference velocity.

2.3 Geometrical Considerations

Singuilaritu Spacing and Location

In early studies, solutions were obtained using arrays like those
shown in Figure 2.1. Though good interference prediction was possible
(Fig. 2.3),wildly oscillating singularity strengths were obtained which
were obviously unrelated to the flow physics. Closing up the arrays and
placing them around the model location would, in principle, relieve this
problem but in practice did not because the matrix became increasingly ill-
conditioned. It is evident from Figure 2.3 that a satisfactory solution
is obtained with a reduced number of singularities, provided that their
placement recognizes the model and flow geometry appropriately. To satisfy
the greater number of boundary conditions a least-squares approach is there-

fore required.

in addition to the downstream sink, matching each source in the test
section matrix, a single, upstream source is also provided, explicitly, to
allow the overall signature to shift vertically. This helps to achieve a
better match to the experimental upstream asymptote.
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Singuiartty Span

it has been found that the present, generalized method is fairly
forgiving with regard to errors in estimating vortex or source span. it
is stated in Reference 10 that span-sclution within *0.10B will hold errors
to an acceptable level. This tolerance is fairly coarse and should not be
too difficult to attain in practice. An exception, found recently, occurs
when wall signatures measured in the tunnel corners are employed. These
locations are significantly more span-sensitive than the central ones.

Wall Pressure Orifice Location - Peripheral Direction

Both theoretical and practical considerations arise in selecting the
peripheral locations for wall pressure orifice rows. Figure 2.4 shows
theoretical wall pressures, as a function of peripheral location in the
bound vortex plane and far downstream of a horseshoe vortex in a wind
tunnel. As expected, center-roof and center-floor locations give the largest
pressure signals due to lift and so are good candidates, from a theoretical
standpoint, for upwash interference predictions. The tunnel corner locations,
5 and 13, are much less sensitive®. While roof locations are usually very
practical, there may be difficulties with floor orifices. In large tunnels
there is the obvious problem of foot traffic but in all tunnels powered
models may involve jets or jet sheets which impinge on the tunnel floor.
Even if tunnel floor separation is controlied (see Section L), jet-impinge-
ment may compromise the floor pressure signature.

wall Pressure Orifice Location - Axial Direction

As indicated in Reference 9, Section L, & test section iength of about
1.5 times tunnel width is desirable to obtain adequate asymptotes to the
pressure signatures. Orifice spacing should be smallest opposite to the
model and it's immediate wake and may increase towards the test section
ends where pressure gradients are less.

A generous number of orifices should be provided on the floor at and
ahead of likely jet impingement locations, for monitoring ground boundary
layer control. in jet-impingement situations, only the forward part of a
floor-orifice row may be usable for tunnel interference estimation. In
other situations a less dense selection from the whole row will be useful.

Vorter-mduced Upwash Effects at the Twiel Sidewall

In broad terms, floor and roof orifice rows may be thought of as
responsible for sensing vortex-induced flows and thereby providing data for
upwash interference corrections. The sidewall orifices are used for
estimation of blockage corrections.

Far downstream of the bound vortex, Figqure 2.4 shows that upwash induced
by the trailing vortex systems can have a significant effect upon sidewall
pressures. This could affect the downstream asymptote of the sidewall
pressure signature and cause an apparent increase in wake blockage. However
the implicit assumption of Figure 2.4, that the trailing vortex remains
horizontal, must be reviewed before any legitimate comment can be made
regarding corrections for such cross flow effects.

*Note, however, that 13 becomes the proper location for the ''sidewall' row
in ground-effect tests. It is also needed for semi-span model tests.
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in Reference 13, vertex roll-up calculations are described for wings
situated in tunnels of various relative sizes and shapes. Though the
central vortex sheet deflected significantly in some cases, the vortex
centers drifted downwards very little. A more extreme, experimental result
is presented in Figure 5.2 of Reference 8 concerning flow measurements
behind a partial-span jet-flapped model. In this case the tip vortex path
was horizontal and the flap vortex moved down significantly only at high -
Cy- On this basis, it appears reasonable to assume that the trailing system
remains essentially horizontal and to consider correcting sidewall pressure
signatures for trailing vortex-induced upwash. Since there is no corres-
ponding source effect on floor/roof increments due to lift, for centrally
mounted models, it is possible to analyze these first and then correct the
wall signature for vortex-induced crossflow, prior to setting up the blcckage
analysis. No iteration is required and the 1ift and blockage probiems remain

essentially uncoupled for unswept configurations.

2.4 Effects, on Measured Signatures, of Sweep,
Angle-of -Attack and Model Offset

At zero angle of attack the addition of sweep to the source and
vortex lines only affects the shapes of the velocity distributions at the
tunnel surface and there are no “eross'' effects such as vor tex—-induced
apparent blockage or source-induced apparent lift. However, on pitching
the swept system, these effects appear and must be considered. To inter-
pret them, a relationship must be established between Q/BH and T/v BH
the respective normalization velocities for source and vortex-induced

effects.

We may find the ratio of total drag to total lift for a line-source,
line-vortex system as follows:

Lift = pU.Tb where b is vortex span

-

Induced Drag = %-or~

Profile Drag = U, Q

Dot ®OI +0 U= — a
Thus T = = -8— T +T‘—b- 2.1
pULTb *
At (L/D) yay induced and profile contributions are equal so
D i r 20
(_) W = i = —
L MIN L Ueb b
Thus %% - (%J 2.2
MIN

.
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This permits us to interpret the sourcewstrength, vortex strength relation-
' ship in terms of (L/D)ypayx. After some algebra, we obtain

] b _

; o (g) 7®/M s

. > T )
rv 8H 2 L/D) yay

For the basic, knee-blown flap model, tested in the 30" x U43'' tunnetl,

; - b/8 = 0.465, B/H = 1.433
w0 _ v .65t x 1.1972 _ .278k
so that T/gp 2 (L/D)MAX (L/D)MAX
= .0928 for (L/D)y,y = 3
2.4
= .0398 for (L/D)MAX 7

In a typical test case, for the knee biown flap model at C, = 2 and low
angle-of-attack, it was found that

total Q/U_BH = 0.0338
and total /Uy [BH = 0.5527
= 0.0612 ;

# so that Q/IVBH

which is within the range in Equation 2.4,

Effects of Sweep and Angle-of-Attack on wall Signatures

To demonstrate these effects, an example has been selected which is
based upon the geometry of the swept, knee-blown flap model in the no-tips
configuration, Effects at the tunnel wall are shown in Figure 2.5. Sweep
and angle-of-attack effects will be discussed first.

Figure 2.5(a) shows that adding sweep to the line-source system shifts
the axial velocity signature downstream. This is expected, since the same
value of root (X/B) is used. The shift is insensitive to angle-of-attack,

‘ which is a welcome feature.

Vortex-induced axial velocities at the sidewall (Figure 2.5(b) are
entirely dependent upon angle-of-attack. For typical relative strength
values (Equation 2.4) it is apparent that peak ''cross''-induced velocities
at high angle-of-attack may be comparablie with the direct, source-induced
velocities. This probably explains the over-corrections for blockage
noted in Reference 9 for swept-wings.

M
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Vortex-induced upwash at the sidewsl] (Figure 2.5(c)) is comparable,
in normalized units, with the source induced horizontal velocities
(Figure 2.5(a)) - as might be expected. It is appropriate to relate the
upwash ro the mainstream velocity: this may be accomplisned via the tift
parameter CLpp f(i.e. lift coefficient normalized on model span times tunnel
half-height, in the present case). As & CLphp value of 2.0, which corres-
ponds to incipient tunnel flow breakdown (see Reference 8) the maximum
value in Figure 2.5(c) of 0.60 represents an upwash equal to about 25% of
mainstream. When added vectorially to a unit mainstream, an increase of
only about 3% occurs in the total vector, This would increase somewhat at
the higher CLpp values permissible when ground-blowing is used; correction
for the effect on blockage is probably desirable at this point.

Figure 2.5(d) shows that source-induced upwash at the sidewall location

is an order-of-magnitude smaller than the source-induced axial velocity

(Figure 2.5(a). When combined vectorially with the toial axial velocity the

effects of source-induced upwash will be negligible
Effects, at the Sidewall, of Change to Model Fivot Lecotion

Curves are included in Figure 2.5 which show the effect of changing
from the standard, mid-semi-span a-center to one at the wing root. The
latter was used for swept XBF model tests. At i5-degrees argle-of-attack,
this places the entire model approximately 73% nearer wo the tunnel floor.
In most of the cases in Figure 2.5, the effects of this change are small.
For Figure 2.5(d) this is also true tecause tre overall effects are small
(see above). However the effect on vertex-induced horizontal velocity is
noticeable and it is apparent that offsct effects must be included when
calculating this correction to the blockage signature. This feature could
be troublesome because it isg angle-of-attack dependent.

Eflects om Roor-Minus-Fioor Signature

Figure 2.6(a) shows that the sum of the roof supervelocity and the
floor countervelocity, induced by the vortex system, is substantial.
reduces the peak velocity differences (UR - uf). 1t is found that the
swept vortex curve, at zero angle-of-attack, is essentially unchanged by

adding 25-degrees of incidence. The pivot location is consequently
immaterial,

Sweep

Source ''cross'' effects, on the "lTifting" (roof-minus-floor) signature
(Figure 2.6(b)) are small when relative vortex/source strength is considered.
The fact that the forward pivot case produces less "cross" effect is, at
first sight, surprising. This arises because the tunnel roof and floor
centerlines are most affected by the central region of the source system,
which remains on the tunnel axis for the forward pivot, but which moves
towards the roof, with increase in x, for the mid semi-span pivot.

Ground Effects Testing
For in-ground-effect testing, either the tunnel floor ("'ground'') or
the first ground image may be regarded as part of the model
The true ''center-sidewall" orifice row
tunnel sidewall and, strictly speaking,
should be located here.
in impingement-free cases

under test.

is now situated at the foot of the
the blockage sensing orifice row

The roof orifice row remains correctly located but,
» the tunnel floor row senses pressures which

correspond to the with-blockage double-tunnel centerline velocity distribution.
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Though it would be possible to set up the necessary computation schemes
on the above, somewhat idealistic basis, it is more practical to consider
the in-ground configuration as a beiow-center test when recovering source/
sink and vortex strengths from the meastred pressure signatures. in the
second-stage analysis, interference velocities are then calculated at the
tunnel floor location, rather than at the true turnel centerline. Both the
in-tunnel vortex/source arrays and their first ground images are omi tted
when calculating blockage and upwash interference.

Offset Models

Sometimes, the need arises to conduct a ''center-tunnel'' test with the
model displaced vertically from the tunnel centerline. One reason for doing
this would be to inzrease 'ground' clearance so as to reduce the severity
of impingement problems for powered models. Ground-effects testing would,
of course, involve below-center models. An orifice row situated at mid-
sidewall ''sees' not only the desired blockage effect associated with (for
example) an above-center model but also a bound-vsrtex-induced counterfiow
which, wrongly interpreted, would appear as a negative solid blockage com-
ponent. Distortion of the tunnel roof an! floor signatures would also occur
because of offset effects for both vortex and source systems.

A swept-wing model at angle-of-attack has several similarities to the
of f-center model. The front of the model, situated above-center, has some
of the properties just described while the tips, below center, yield incre-
ments of opposite sign and shifted aft. The net effects are illustrated in
Figures 2.5 and 2.6.
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2.5 Use of Least-Squares Smcothing

Though the results of the pilot study (Figure 2.3) were encouraging,
doubts remained about the response of the alternating inverse elements

= (Figure 2.2) to severe data scatter. Figure 2.7 explores this problem. A
single point on a smooth, 'standard' wall pressure signature,designated A
in Figure 2.7(a),was perturbed upward and downward as indicated at 'B' and ‘
'C*. Though the interference results from case A agreed quite well with . ﬁ
those derived via the older, iterative method (Figure 2.7(c)), the conse-
quence of perturbations 'B' and 'C' were serious (see Fiqure 2.7(b)). This
provided strong motivation towards a least-squares approach.

]

Devivation of Least-Squares Equations

We define v;: as the velocity induced at the j th observation point
by the i th singu{arity and it's image system in the tunnel walis. Due to
the complete set of N singularities the total velocity induced at the j th

point is given by

- vl “ﬂ‘- o

where o; are the required individual singularity strengths. [If the
= corresponding measured velocity Vj differs from the calculated value ¥y
by a residual amount 6j we may write :

6j=|V-—\1

N
or . = | vy - Z v.. o. |

The objective of the least squares approach is to minimize the net
area between the V: and the Vj curves as determined at the N oObservation

points. To do this we minimize

LA ¢
.
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i.e minimize

N N
52 = 2 [v. - 2 v.,. 6.] (2.1)

To minimize this sum for a particular member k of the singularity set N,
differentiate (2.1) with respect to oy and equate to zero. Thus:

1 ) 2
(v. - V.. o.] =0
Ol i=1
or
N N
z Z[VJ- - E i o'] (-vkj ‘1) =0
§=1 i=1
which leads to
N g N
) o. V..V, . = V. v (2.2)
for
1« kg N

The previous N x N equation set used to obtain an exact match at
every observation point j is now replaced by an N x N set. N, the number
of singularities, may be greater than, equal to or (more usually) less
than N, the number of observation points. The case N = N is not equivalent
to the "MATCH'" procedure described previously because the theoretical curve
is fitted to the experimental data in 3 least-squares sense. On writing
equation (2.2) in the form

(A, ] [o,] = 8]

we notice that the elements of A, no longer can be identified simply as
influence c~efficients. The B é*ements are no longer simply observed
velocity increments at k but are now weighted sums of all ¥ increments.

Figure 2.8 is the least-squares equivalent of Figure 2.2, which
generates an exact match. 1t is evident that the least-squares process
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has caused the upper source-sink matrix to become symmetrical about the
leading diagonal and the largest element is now only 16-times the smallest,
rather than almost 300-times. However the 'chequerboard' plus and minus
pattern in the inverse matrix (center table) still remains. The lowest
matrices, used to obtain centerline interference dirvectly from wall velocity
increments, do have a changed structure, however. 1t may be seen that,
rather than the previous ichequerboard' plus-minus structure (Figure 2.2},
signs now alternate by column. However, the significance of this must be
appraised via studies of some typical cases.

Examples of the Least-Squares Approach

Figure 2.9 repeats the example shown in Figure 2.7, which demonstrated
the sensitivity of the "MATCH' approach to data scatter, but applies the
above, least-squares solution to it. |t is evident that the previous
sensitivity to "noise'' in the data has been largely eliminated.

Figure 2.10 is an example of a complex, double-peaked wall pressure
signature, measured under tunnel flow breakdown conditions with no tunnel
boundary layer control applied. Though the example is somewhat artificial
for this reason, it shows that the restriction of the previous, iterative
method to simple, single-peaked pressure signatures have been removed.

This flexibility, the data smoothing capability and the reductior of
maxtrix size afforded by the least-squares approach represent 3 significant
advance over the previous approaches.

2.6 Mathematical Summary
Having reviewed the physics of vortex and source variables in the

previous sections, we are in a positicn Lo set up the equations from which
source and vortex strengths may be obtzined. In the interests of clarity,

the<e will be set up as direct influence rather than least-squares equations.

Notation
Subscript i is wne index for the source or vortex.
j is tne index for the sensing point.
Summations tg is the number of source variables, equal to
the number of wall X-locations.
Ir is the number of vortex variables, equal to
the number of roof/floor X-lccations.
Superscripts R Roof
F Flocr
RF Roof value - Floor value
W Sidewall
u,v,W "Direct' influence coefficients, due to unit
singularity i.e. due to T for rod/floor
sensing points and due to Q for wall points.
u,v,w Veross'  influence coefficients including both
axial and normal-to-mainstream effects.
Cp Measured static pressure coefficient
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Influence Equations
Equating measured and theoretical roof-minus-floor axial velocity

components, we obtain

'r R

be (VTG = /T-67) =1 iy ,+Z‘ U (1)
i

Fig 2.6(a) Fig 2.6(.)

Fquating measured and theoretical sidewall pressure coefficients taken
as the mean of the two sides, we obtain:

oy -
Uy gl r) $(Y Ty s w00 b@

Fig Fia Fis Fia
2.6¢a) 2.5 () 2-5C¢) 2.6(d)

We note that equations {1) and (2), which will be needed to find T

and Q. are coupled and, because of terms four and five of Egquation \2)
nonlinear. However, we saw previously (Figure 2. 5(d) and related dis~
cussions) that the Fufth term is very small. Dropping this term makes
(2) tinear in Q; and permits us to write (1) and (2) as:

- - _ I
RF | -1 —— R eF O gr
- -C - - - V
T Uij U (V1 o /1 cpj) Y Q; (3)
L - L i=1
r - =1
RF - T
= Yy T+ Tz,“ (3a)
T 5
and
ir , % L ) '
Q.=U Uso cp)—(Zw r.) - Y W (1)
' H i=1 ' =1
L
= T, + T + 7T b
Ty J H; 3 h 5 (La)
If the w'. term is also negligible, as for small span or low tift

cases, (3) andJ(h) may be combined as
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Qi Uij Uij u, ¥t~ ij

f

Solution of Influence Equations

! . . RF
For the general, large I', case the faur sub influence matrices Ujj,
u?? U?i and U and the upwash matrix wii are required. The form of
equation {5) is less useful than it appears, not only because it lacks the
wW. correction but also because data is taken from two distinct populations
(ége roof/floor and sidwall signatures) which violates an underlying assump-
tion of least-squares theory. For these reasons an iterative scheme has been
adopted. This is illustrated in Figure 2.11., For convenience of layout the

pressure terms, which are dominant, are chown last in the equations given in
the figure.

.
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3.0 TEST MODELS, RIGS AND PROCEDURES

3.1 General Comments

Many of the tests which will be described are essentially repeats of
earlier tests (Reference 8) with augmented wall pressure instrumentation
and, in appropriate cases, floor blowing to suppress tunnel flow breakdown.
Since detailed descriptions of the models concerned have been given prev-
iously, particularly in Reference 8, only the main dimensions and details of
any relevant changes will be presented here.

The models and rigs to be described comprise a simpic, semi-span wing
{subsection 3.2), the unswept and swept knee-blown-flap modeis (subsection
3.3) and wind tunrel instrumentation, Al! tests were conducted in the
30" x 43" low speed wind tunnel (the “MTF'') at Lockheed-Georgia. The tests
on the simple wing were conducted &s part of an in-house, pilot program on
upwash interference determination by the wall pressure signature method.
Selected results are included in the present report for illustrative purposes.

3.2 The Simple Wing

Figure 3.1 shows a floor-mounted semi-span wing having a whole-wing
aspect ratio of 3.0. 1t has an NACA0012 section and body-of-revolution tips.
At the quarter-chord location, a i-inch diameter bar extends downward !
through a clearance hole in the floor and attaches to a 3-component platform
balance via a turntable which is used tc set angle-cf-attack. The bar may
be replaced by a cylindrical balance which adds wing normal force, normal 1
bending and end load to the lift drag and pitching moment measured by the
platform balance. There is a clearance of approximately 0.10" between the
wing root and the tunnel floor. The wing root is immersed in the tunnel
floor voundary layer which is uncontrolled. MNonetheless, checks between
data from the present wing and established finite wing theory show minimal
performance degradation due to wing root effect.

The photograph of Figure 3.1 was taken through a new, laser velocimeter
window which now comprises the bach wall of the 30" x 43" test section. Part
of the laser velocimeter may be seen at the right.

3.3 The Unswept and Swept Knee-Biown-Flap Models

Figure 3.2 was also taken through the new back window/wall of the test
section. Though the swept knee-blown-flap model is the object of the photo-
graph, a good view of the sting, model air supply, tunnel wall pressure orifice
strips and the floor blowing slot are also obtained. Though the sting appears
quite massive in this view, it should be noted that it is only about 2-inches
wide. HMost of it disappears into the floor at high angle-of-attack, as shown
in Figure 3.3.

ii

Figures 3.4 and 3.5 show the principal dimensions of the unswept and
25-degrees-swept knee blown flap models. For both models the tips and the
slats are removable. The flaps are integral with the mode!, however and
have upper surface angles of 76- and 60-degrees to the wing reference line
respectively for the unswept+ and swept-wing models, Further dimensional
and sectional details are given in TABLE 1. i
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3.4 Floor Boundary Layer Control

The boundary layer control rig used for ground blow-ng in previous tests
(References 3, 6 and 8) was modified for the present test series by providing
the capability to control three spanwise slot segments independently. Sep-
arate controls were provided for a central 8-inch span slot and two 6-inch
segments to each side of this, for a 20-inch total, equal to the powered span
as recommended in Reference 8. (Previous tests employed a 30-inch span slot).
The change in supply arrangements made it necessary to revise the blowing slot
detail to the form indicated in Figure 3.6. The slots had been situated above
the middie of each plenum in earlier tests. Spacers were used at regular span-
wise intervals to maintain the 0.067-inch stot height. More were required than
previously because of a change from stainless steel to aluminum plenum covers.

Slot calibration procedures were as documented in Reference 3. As before,
blowing rate was monitored using plenum static pressure taps.

3.5 Wall Pressure Instrumentation

Figure 3.7 shows details of wall pressure orifice locations used for
tests on the knee-blown flap models. |t should be noted that, for these tests,
rows 3 and 5 were located on the upper and lower side walls and not on the
roof and floor as shown in Figure 3.2. The orifice strips were moved after
completion of the main tests to accommodate the laser velocimeter window.

Previous instrumentation comprised the sidewall orifice rows, 2 and 4 and
the floor rows, 7 and 8. The latter rows were augmented for the present tests
to give better resolution for identifying the ground vortex and hence fiow
breakdown. Rows 1, 3 and 5, in the tunnel corners, are new. Rows 1, 3, 5, 6
and the aft parts of 7 and 8 were made from aluminum strips, as may be seen in
Figure 3.2. This, newer arrangement is preferable to orifices installed
directly in the tunnel walls. General comments about pressure orifices, their
location and their use may be found in Section 4 of Reference 9.

3.6 Tunnel Speed Control

The desirability of running at ''corrected-q'' during powered mode! tests
is well known. |[n previous tests in the present series (References 6 and 8)
this was achieved by sensing wall pressures upstream and downstream of the
mode! at suitable locations and using a voltage divider network {Figure 3.5
of Reference 6) to interpolate for an effective pressure at the model location.
Though this approach was quite successful, the fact that it relies upon only
two pressures, rather than a whole pressure signature, is an obvious weakness.
A specific shortcoming is that solid or separation bubble-induced blockage is
likely to be underestimated.

For the present tests, the matrix method for blockage was available in
time to permit on-line, whole-signature analysis to be used for speed control.
A combined inverse and centeriine interference matrix (similar to Figure 2.2,
lower part) was applied to supervelocity data derived from the sidewall orifice
rows. Tunnel 'q' and thereby C,, was determined at the model using the on-line
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data reduction program and the tunnel speed control was adjusted until the
desired CU was obtained. At the time of testing, no swept-bound vortex cap-
ability had been developed, so a straight wing matrix was used for the swept
wing tests.
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4,0 UsSt OF TUNNEL-FLOOR BLC TO SUPPRESS FLOW BREAKDOWN

4.1 Effects of Tunnel Blockage and Flow Breakdown.

The major problems confronting the test engincer in a powered model test
have been, in order of decreasing importance: the difficulty in running "whole"
Cu's, the related difficulty in correcting forces for blockage effects on 'q',
the difficulty in recognizing when flow breakdown effects have become excessive,
the impossibility of correcting for them and, finally the problem of angle-of-
attack correction with curved, powered wakes present.

it is believed that the studies described below represent the first
successful attempt to solve the overail problem and identify the specific con-
tributions, to model forces, attributable to the various effects mentioned
above. The general approach will be to start with uncorrected 1ift data for
the unswept knee-blown flap model, at high Cy, and illustrate the effects of
first correcting for blockage and then applying floor blc to suppress tunnel
flow breakdown.

Blockage and Angle-cf-Attack Corrections

Figure 4.1 shows CL -~ a curves measured using on-line blockage corrections,
as described in Section 3, at 'whole' ( values of 4.0 and i10.0. For comparison,
"free air'" curves are included (broken lines) which represent data measured in
the 7' x 10' tunnel at NASA-Ames. The crosses in Figure 4.1 show € -values
which employ nominal tunnel-q and uncorrected x.values. Since corrected - C,
is held constant, uncorrected C, values vary with o and are greater than the
set values.

The circles represent data corrected for blockage, by the matrix method
and for angle-of-attack, by the Williams and Butler method (see References 11
and 6 - section 5). We shall see in Section 5§ that use of pressure signatures

to determine angle-of-attack correction procedures almost identical results

in many cases. Chained lines in Figure 4.1 connect corresponding uncorrected
(crosses) and corrected data points. It is evident that although corrections’
are reasonably successful at lower angles-of-attack and C,-values, signif-
icant errors remain at high a's.

Use of Tunmel-Fleor Blowing

The first tests on the unswept knee-blown flap model in the present
series were dsed to develop ground-blowing stvategy, recognizing that, in
distinction to previous tests, the objective is to remove the ground vortex
entirely, if possible. For the previous, ground-effect tests the objective
was to establish a zero-skin friction condition at the ground.

Several candidate criteriawere considered for determining the tunnel-
floor BLL setting. However, it rapidly became apparent that the best procedure,
was to eliminate entirely the negative pressures upstream of the jet impinge-
ment, as illustrated in Figure 4.2, Line printer symbol plots were made
routinely of the center-floor static pressure signature and blowing was in-
creased until the suction peak disappeared. No attempt was made to prevent
jet impingement. At this point, no force correlations had been made and no
flow field measurements had been attempted.
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Figure 4.3 shows that the use of floor-blowing to suppress flow break-
down was remarkably successful in removing the residual errors in the Figure
.1 Tift curves. The errors in the previous blockage and incidence corrected
data (circles), were virtually eliminated when floor-biowing was applied
(triangles). Only for the last two points at C, = 10 was floor-blowing not

fully effective: for these the limit of blowing capability evidently had been
reached.

Figure 4.3 also demonstrates the significance of the distinction between
ground boundary conditions appropriate to ground-effects as opposed to center-
tunnel testing. The moving-ground points (pluses in Figure 4.3) give the
correct result for a ground-effects case. It is evident that, for this case,

a floor vortex should be present, rolling just above the moving ground. Because
of this, some 1ift degradation would occur, relative to the corresponding
free air case, in flight near the ground.

Magnitudes of correcrion and ground blowing quaniitics
Figure 4.4 shows typizal blockage corrections, angle-of-attack corrections

and ground-blowing C, values as a function of angle-of-attack at typical model
€, values.

In the most extreme case, the tunnel-q setting was only 65% of the ¢
experienced by the model. Angle-of-attack corrections appear to be less
sensitive to C, and peak at about 4-degrees. Some scatter is evident in the
ground-blowing €, settings but the general trends are clear. Thcugh values
of the order of 0.6, for the Cy = 10 case, seem high they are a small fraction
of the corresponding model blowing momentum coefficients. The blowing
pressure ratio scale, to the right of the ground C, plot in Figure 4.4 does
nct apply to the CU = 10 case because this was obtained via a reduction in
tunnel-q at constant model mass flow.

4.2  Flow Measurements Using the Laser Velocimeter

At the end of the planned test series on the knee-blown flap models,
tunnel modifications were made to install the .arge window in the back wall
of the test section. The laser velocimeter was then installed, in preparation
for another test. The opportunity was taken to investigate the flow breakdown
phenomena juct described by making LV flow traverses near to the model center
plane. To reduce ''shadowing', the straight-winged mode) was reinstalled.

Figures 4.5 and 4.6 provide vivid evidence of flow breakdown, ahead of
the model, at extreme model €, 's and angles of attack. These are fixed-
floor cases with no blc applied. 1t will be noted that the incident flow
angles, just ahead of the model are quite low in Figure 4.5 and 4.6. Figures
4.7 and 4.8 show the same mode! conditions with blowing applied at the tunnel
floor; The floor vortex has been pushed back almost to the impingement point
in both cases and it's size has been reduced markedly. Just ahead of the
model, the incident flow angles are much greater and the flow vectors are
longer. These changes are consistent with the 1ift incresses observed when
floor blowing was applied.

The data of Figures 4.5 through 4.8 confirm the chcice of the criterion,

discussed previously, of increasing floor blowing until suctions below the
floor vortex vanish.
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4.3 Interpretation of Wall Pressure Signatures

Wall supervelocity d~tc, derived from pressure signatures for the
previous €, = 6.0, a = 28° case, are shown in Figures 4.9 and 4.70. With no
floor blowing (solid points) the floor vortex peak is readily identifiable in
rows 7 and 5 and may contribute to the row 2 and 4 (i.e. sidewall) peaks.
However, it appears that row 3 is not affected: its peak is too far forward
to be vortex-related.

On applying blowing through the 20-inch slot (+ symbols), the suction
peak disappears entirely at the center floor row 7 {(by definition), but is
not entirely removed at row 5, the lower sidewall, where there is no blowing
to suppress it. 1t is also very likely that the second peak in rows 2 and b
also marks the path of the "floor' vortex in the 20" blown-floor case.

Data with the slot-width reduced to 8 inches (triangles) shows that this
is less effective than the standard, 20-inch clot. This is confirmed by force
measurements.

£efects on Twnnel forrections

it is disturbing that, under high-C,, high-a conditicns, the main
suction peak measured at the sidewails (rows 2 and b) may include a signifi-
cant component caused by the passage of the floor vortex across the tunnel
sidewall orifice row. However, the application of floor blowing shifts the
vortex aft leaving what is probably the correct, solid/bubble-blockage induced
first peak. MNonetheless, the wall pressure signature input to the tunnel
blockage correction program still includes a second peak which is directly
induced by a vortex, rather than being a true reflection of tunnel blockage.

Figure b4.11, taken from Reference 10, explores the effect of a dominant
second peak upon tunnel centerline blockage interference. The experimental
case (circles) is compared with an idealized case {triangles) with the
second peak removed. As might be expected, there are significant changes in
interference opposite to the second peak itself. However, the effect of the
peak on the interference at the model location is surprisingly small.

another effect of floor blowing, indicated to some degree in the row 3
data of Figure 4.10, is a general reduction in blockage interference. This
is especially noticeable on applying BLC to the C, = 10 case illustrated in
Figure 4.12. In this case, it is speculated that, with no BLC applied, the
separation streamline, from ahead of the floor vortex, rises to perhaps halt
the mode! altitude at its crest. Though the pressure signature blockage
prediction method probably responds to this with appropriately located cor-
rections of the proper sign, the total flow is far too distorted for any
such corrections to be taken seriousiy. It is obviously better to get rid
of the floor vortex. by applying blowing blc, than to try to correct for it's
effects.

Additional Floeor-Vortex Data

Figures 4.13 and 4.1k show the development of floor centerline
pressure distributions, with angle-of-attack, at C, = 2.0 and C;, = L.n
respectively, with no floor blc applied. Figure ﬁ.ts summarizes the data
for C, = 4.0 in terms of vortex and impingement location. Correspondina
pressure data, at both C ‘s are presented in Figure bL.16.

24

. ar- \r-




TORETE T TR TSSO e

R S s o § -y
ek sovatresss TR U ST LIt ST . VS P T T

The impingement point moves forward, as expected, with angle-of-attack
(Figure b.15). The maximum suction point remains an almost-constant distance
ahead of impingement which suggests that vortex size is not very dependent
upon model angle-of-attack. The first positive pressure peak gives a general
indication of the location of the ground separation point, however the peaks
are not well defined at the high angles of attack.

The development of peak pressures is shown in Figure 4.16. At Cu = 2
this plot gives a good definition of the angle-of-attack for the onset of floor
separation, i. e. where the vortex and impingement curves diverge from the
single, first positive peak, line.

Application of floor blowing eliminates the vortex suction lines in
Figure 4.16. However there is very tittle change in the impingement pressure ]
curves.
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5.0 FORCE AND MONENT CORRELATIONS

5.1 Checkout for a Simple Wing

) Before embarking upon an investigation of powered-model corrections, it
! appeared desirable to test the new, wall pressure signature-based angle-of-
f attack correction procedure on a simple model, Appropriate tunnel pressure
' and model force data were therefore obtained in tests on the wing shown in
Figure 3.1.

Figure 5.1 compares . a curves corrected by the classical, Glauert
methad (+-symbols) and by the new wall pressure signature method {(circles).
Wall pressure signature - derived blockage corrections, which were small,
were applied in both cases. It is evident that the new method provides angle-
of-attack correction estimates slightly smaller than those determined via the
'Glauert' approach. However the generally good agreement gave confidence
that the new method works properly.

5.7 Selection of Singularity Geometry and lteration Procedure

Geometry of Vortex and Scurce Llemewnts

The effects of sweep and angle-of-attack on tunnel influence coefficients
were discussed in some detail in Section 2 from a theoretical standpoint.
Figure 5.2 shows vresults from a practical application to the swept-wing,
knee-blown, jet-flap model in a test at (| =2. Influence matrices corres-
ponding to two different element geometries were used in Figure 5.2(a) to
correct measured data {chain lines) for comparison with "free air' data
(circles) measured in the NASA-Ames 7' x 10' wind tunnel. :

T o T T T e s
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i The broken lines show corrections based upon the ''correct'' swept element
y geometry set at 15-degrees angle-of-attack for both bound vortices and

sources. For the full lines, simple, unswept elements were used. the :
influence of geometry is clearly very minor for this model and tunnel com- ;
bination. 1

"o

Effect of "ecross’ lerms
Figure 5.2(a) displays over-correction of the 1ift curve. 1t has al-

ready been mentioned that previous blockage over-correction may have been

h a consequence of neglecting the effects of vortex-induced upwash Y"eross''
effects on the sidewall signature. The broken lines in Figure 5.2(b) show
the results of a full iteration, as outlined in Figure 2.11, applied to the

p previous example. The differences between the broken Tines and the full
lines are the effects of ''cross' terms. As anticipated, the over-correction
of the lift curve has been almost eliminated.

M e e Maiafea S s n ot e

Furtheir examination of the '"cross' terms revealed that w-squared term -
i.e. wake upwash at the tunnel wall centerline is by far the largest. It
is also found that the effects of these terms become excessive beyond C =2
(see Figure 5.2(c)). Tris suggests that the horizontal trailing vortex
model starts to fail because its' geometry is fixed. It may be shown that
incremental C-corrections due to *he effect of w-squared on blockage are
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proportional to CL-cubed for a fixed-geometry wake. The system is very
sensitive, at high €y, to small changes in wake location.

5.3 Analysis of Angle-of-Attack Corrections

The corrections for the knee-blown-flap models are dominated by blockage
effects and the sensitivity to errors in angle-of-attack corrections is quite
small when plotted in conventional 1ift curve and drag polar form. Tie
present angle-of-attack corrections will therefore be assessed in comparison
with other predictions.

The wall pressure signature method provides a continuous distribution
of Ax along the tunnel axis and an effective model position must be selected
which characterizes its aerodynamics. |In the present case, a fixed location
at x = 0 has been selected for both unswept and swept wings, recognizing
that other locations - such as varying load centers derived from Cy and (-
could be considered.

For the swept wing, the choice of the correction location at the root
quarter-chord could be questioned. However an aft shift in C.P. location
on adding sweep did not occur because a lower flap angle was also introduced,
during design, to improve the drag polar. |In fact, the measured swept-wing
C.P. lay slightly forward of that for the straight wing in most cases. Both
lay between the quarter and three-quarter root chord locations and moved for-
ward or aft depending upon the balance between wing and flap 1ift.

Figure 5.3 shows angle-of-attack corrections, Au for the basic swept
wing as a function of blockage-corrected Cf. The three parts correspond to
a) unpowered or low-C (i.e. BLC) conditions, b) moderate C,'s with no
floor impingement and ¢) cases with floor impingement, with floor bilowing
used. In all cases fuli-length roof and floor pressure signatures were
employed, recognizing that errors arise from impingement regions.

rigure 5.3(a) shows thot, as for the simple wing, wall-signature
derived angle-of-attack corrections are slightly lower than the classical
Glauert method but increase, per Cy, during and after stall. The hook-
shaped Ax curves occur because the wing center-of-pressure moves back less
rapidly with C after stall than it had moved forward prior to stall. It
is known that the flap separates before the leading edge does at rzero and
low C, values.

At moderate C, values, with no floor impingement, Figure 5.3(b) shows
smaller angle-of-attack corrections than both the Glauert (straight-wing)
and the Williams-Butler estimates, even though the latter include a €,-
related attenuation factor. How.ser the increase with Cp is more rapid for
the signature-based estimates than for the others. Though the C.P. does
move forward with angle-of-attack in both the cases shown, the streamwise
angle-of-attack gradients are insufficient for this to be the full explain-
ation. Changing flow geometry may also be partly responsible. This is
almost certainly true in the impingement cases, at (= L.0 and 6.0, shown
in Figure 5.3(c). Here, the trends are generally similar to those of the
previous figure but the levels are in better agreement with the other
estimates.
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Angle-of-attack corrections for the unswept KBF model (not shown) are
generally greater than for the swept geometry as should be expected, and lie
above the Glauert values increasingly up to €, =2. Above this, difficulties
in signature analysis obscured the trends.

Comments

tn the non-impinging cases described above, the &a estimates by various
methods are generally within a spread of about one-degree. Within this
range, there is no experimental basis for saying which resul” is correct.
Further refinement would probably require investigations of surface pressures
- particularly leading edge suction peaks, in large and small tunnels. As
ment ioned previously, the consegquences of these differences to the present
force and moment data are n~* ~f maior importance.

For impinging cases, the signature method indicates quite large du 1
values at high C, compared with the simpler theories. However, the theore-
tical model used = these cases is clearly inadequate because it fails to
recognize impir ~+_  Improvement to the correction orocedure is also ;
required in these cases with reqgard to the roof/floor pa.t of signature analysis. :

5.4 Force and Moment Correlations for Unswept- and Swept-winged knee-blown
jet-flap models.

Figures 5.4(a) through 5.7(c) show "free air' (broken lines) and
corrected small tunnel force and moment data (points) for the four model

) configurations tested. In analyzing the data, 'whole' floor signatures wers
used in all cases except the straight wing at C;'s of Iy and above, which
failed to converge using this procedure. In these cases, the roof signature ]

only was used for angle-of-attack correction, after removing blockage effects ]
and doubling the roof perturbations. For the same reason, computation was

stopped after the first pass for all configurations when C, was L4 or greater.

A1l uncoupled solutions {i.e. independent angle-of-attack and blockage

solutions) are designated by an asterisk in the C, table.

-« NASA CR 152,241 (Ref 9) documents the first attempt to apply the wall
pressure signature method to the present configurations. Relative to the
earlier, 'q-pot' corrections of CR 152,032 (Ref 8) the Ref 9 pressure sign-
sture results were disappointing because the correlation with '"free air"
data was significantly worse for high-cU cases. This occurred largely
because of flow breakdown itself but also to some degree because the signa-
ture analysis of the Ref 9 iterative method can respond adequately ~nly to
classical, single-peaked pressure signatures.

Straight-Wing, With and Wi*hout Slats

The previous over-correction tendency of the iterative, Reference 9
method has been largeriy overcome as a result of the better flex bility
of the present method. The chance for success is increased further by
ground blowing, as was seen in Section 4. Figures 5.4 and 5.5 show that
the present method improves upon both the fef 9 and the Ref 8 approaches. ‘
The latter had a tendency to over-correct at high C,, and under-correct at
low C,. The overall agreement is now within the limits of experimental
error,
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Selected unblown ground data have been added to Figure 5.4 (flagged
points) to supplement fFigure 4.3 which is based upon interim blockage
corrections and includes Williams-Butler angle-of-attack corrections.

The crosses in Figure 5.4, at C, =1, correspond to an "overblown"
ground-blowing case in which the blowing was set as for ¢, = 6, o = 30.
The €, = 1 case does not include impingement, so the results show that
blowing maybe left operative at a 'set and forget', worst-case level without
significant change to other data. Any g-changes, due to excessive floor
blowing, are accommodated automatically via the wall pressure signatureJ
blockage correction procedure.

Swept Wing With and Without Tips Fitted

Relative to previcus methods for correction the present swept wing
corrections, Figures 5.6 and 5.7, show definite improvements in the drag
polar correlations. However, 1ift curve slope still appears to have been
over-corrected at or above C, = b particutarly for the with-tips case
(Figure 5.7(a)). Pitching moments are less well corrected at C.=6 and 10
with the tips added (Figure 5.7(c)) but continue to agree well for the
basic swept case {(Fiqure 5.6{c)).

With the above relatively few qualifications it appears that the
differences between the corrected and the free air data are not only within
the experimental error band but have reached the point where possible cor-
rections to the large-tunnel data should be reviewed. Rough calculations
indicate that a large-tunnel €L -value of 10 would be reduced by approxi-
mately 0.2 on correcting for blockage effects. This is of the same magni-
tude as the anticipated experimental error.
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6.0 DISCUSSION

6.1 Aerodynamics

Overview

The methods described above bring to the wall pressure signature method
new, more powerful and more comprehensive capabilities. These include an
order-of-magnitude reduction in run time and angle-of-attack correction capa-
bility. During development, an effort has been made to make an effective
trade between flexibility and ease of use. Some typical simplifications
which have been included are the use of 'whole" tunnel floor pressure signatures
knowing that they contain impingement spikes, and the use of a constant effec-
tive model location, rather than one which responds to known changes in C. P.
location. Despite these self-imposed restrictions the present methods have
achieved good successes.

There were major questions, at the start of the present work, concerning
the sensitivity of the wall pressure signature method to model geometry,
particularly to sweep and angle-of-attack effects. Strong sensitivity would
have made the method much less useful. In most respects insensitivity has
been found not only to sweep and angle-of-attack but also to singularity
spacing. Sensitivity has been found, however, to vortex wake location under
high Tift conditions. This will be discussed below.

Cases with jet-impingement and floor-blowing were the subject of an
extension to the work planned originally. The use of floor tangential blowing
and wall pressure signature based blockage corrections is a prerequisite to
several of the discussions of impingement effects at high-C,, which appear
elsewhere in this report. However, theoretical modeling for cases with
impingement is currently much less advanced than for cases without it. It
is anticipated that jet-in-crossfiow experience (see Part i) will help sig-
nificantly when improving impinged-jet flow models. Further discussion of

impingement modeling and its problems will follow that for non-impinging cases,
below.

Waxe Modeling for Non-Impinging Cases
AGARD Report 632 is a country-by-country review of wind tunnel correction
methods for high angle-of-attack models. Repeated refercace is made to the
fact that tunnel-induced wake distortion must be considered, even for unpowered N
models, during the correction process. This appears to contradict the assertion,
in sub-section 2.3, that wake vortex movement is not significant for the
present KBF tests. While the present very high-q_test resuvlts support the
AGARD 692 assertions, an apparent paracdox remains in the lower ranges, in-
cluding most of the region of practical interest.

A vortex fair shed to the G50-percent semi-width positions in a rectangular
wind tunnel, at mid-height, possesses the special property of being in equili-
brium in the cross-plane. This may be confirmed by considering image vortices
which give cancelling induced velocities at say, the right-hand trailer (see
Figure (.1). Members of a vortex pair shed near to these special points in tne
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tunnel orbit them at a rate determined by vortex strength. This appears to
be the situation for the basic KBF models, which span 46.5% of the width of
the "MTF' tunnel. This choice of model size may explain the paradox men-
tioned above.

The above special result for 50% semi-span models is not new, but it
may have new significance for sizing and positioning models in tests at very
high lift. For example, if a powered model's span must exceed 50% of the
tunnel width, consideration of near-wake distortion could be used to locate
an optimum, above-center location in the wind tunnel. This would also
relieve the impingement prcblem. Further work in this area appears worth-
while.

Wake Modeling for Impinging Cases

The most significant property of an impinging flow of the present type
is probably that the circulation and span of the downstream vortex wake no
longer define the tctal lift on the model. This is because the existence
of the floor stagnation point permits vortex lines to link to the tunnel
floor. Mathematically, the connectedness of the region is changed by floor
stagnation and closed circuits can no longer be drawn which define the model's
bound vorticity. It is partly for this reason that an obvious step, of
linking total vortex strength to medel 1ift, was not incorporated as part
of the angle-of-attack correction procedure in the present work.

The first problem encountered in setting up an impingement model is
to deteimine how much of the bhound vorticity trails downstream and how much

joins to the tunnel floor via the jet. In unblown~floor cases, the standing
floor separation vortex (Figure 4.5 etc.) tends to confuse the issue. Some
tentative trials have been made using tunnel surface pressures, in blown

floor cases. Tests with several combinations of model-to-floor and trailing
vortex systems gave disappointing results. Tests at C, = 6 and 10, and
usually 4.0, (Figures 5.4 through 5.7}, include impingment, but were cor-
rected using flow models which ignore it entirely, except via the fact that
tunnel surface boundary conditions are satisfied. The success of the
corrections is difficult to explain. While some necessary conditions for
this success certainly can be identified in the present studies {for
example, the use of floor blowing and signature-type methods) additional
conditions are needed to complete a sufficient set. These are difficult

to identify: the topic requires further work.

6.2 Signature Analysis

Inverse Methods

Recognizing that the first stage of signature analysis comprises the
solution of a three-dimensional inverse problem, the methods in Section 2
were reviewed by a researcher in inverse wing design. |t was found that
conventional inverse techniques could be applied to the present problem. A
paneled shape corresponding to the model and its wake might be found using
tunnel wall pressures as the objective function, leading eventually to inter-
ference velocitizs. Further review reveals, however, that this approach
would neither be sufficiently compact, nor sufficiently fast for practical
use in routine wind tunnel correction work.
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Flow Model Geometry

r Though the insensitivity of the overall method to most model details,

’ mentioned above, is interesting aerodynamically, its predominant importance
lies in the simplifications it affords when the new methods are appited. |If
significant sensitivity to sweep and/or angle-of-attack {in particular) had

been found, individual influence matrices might have been needed for (at
b worst) every data point. As it has transpired, relatively few matrices will

be needed for any particular test.
While introduction of "cross''-term capability (Sections 2 and §) lead ‘
to the above result, it also revealed sensitivity to wake location as dis-
cussed above. Within the present framework, the =ffect has been to limit
quite severely the use of ''cross''~terms to improve the results. New ex- .
perimental and/or theoretical techniques are needed, to locate the vortex wake,
! before the capabilities of the present methods can be exploited fully.
i Data "Conditioning!
As for the previous, iterative method, the main task of data pre-
conditioning is to subtract empty tunnel wall supervelocities from corres-
ponding model-present data (see NASA CRI152, 241, Section 4). A subsequent
5 Y conditioning task, in the preent case, will be the removal of jet-in-crossfliow
‘ induced velocity components when appropriate. The last conditioning stage,
which concerns data smoothing, is embedded in the signature analysis itself
both for the previous, non-iterative and for the present method. Though
the latter employs a least-squares procedure for signature fitting, recent E
experience has shown this to be insufficient to prevent a blocked pressure
orifice at the ‘wrong' location from spoiling otherwise good data. A bad-
point rejection filter, similar to that used in the earlier algorithm, is ]
needed.

The impingement-case floor-signature is a heavy candidate for data con-
ditioning. Currently, it is either accepted in full, at user option, or it
is rejected in favor of 'doubled-up' tunnel roof data. This is not always a
good alternative. However, there are a number of unanwwered questions con-
cerning how an impingement 'spike', for example, should be treated (e.g.: ‘
Is it theoratically correct to fair it out?). The answers to such questions
should become more apparent as impingement modeling becomes better understood
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y 7.0 COMNCLUSIONS

Recent advances in wall pressure signature methods are described and
used to estimate angle-of-attack and blockage constraint effects for several

4 powered modeis in low-speed tunnel tests. Tunnel filoor BLC was employed at
i high €, to control flow breakdown. The combined techniques permitted
y successful testing well beyond usually accepted limits.

Use of Twwmel-Floor BLC to Control Flow Breakdown

. Control of tunnel flow breakdown was accomplished using tangential
blowing, along the tunnel floor, from a point just ahead of the model (Figure
3.6). Floor pressures were monitored to determine blowing settings. Sub-

sequent flow measurements,with an LV anemometer, showed that the floor BLC
had destroyed the vortex ahead of jet impingement.

Other observations include:

(1) Elimination of the floor vortex resulted in a large increase in
upwash at the model location.

) (2) Lift loss relative to 'free-air' conditions at high C, was eliminated.

(3) There was a significant reduction in tunnel blockage when floor
BLC was used.

(L) Floor pressures may be used to monitor vortex destruction: floor
blowing is increased until the suction peak ahead of impingement
is eliminated.

(5) Overblowing is not harmful. An entire test may be performed,

without detriment, with blowing set for "worst-case' conditions.

(6) The span of the blowing slot must be no less than the powered span
( of the model.

(7) The BLC needed in the present tests significantly exceeded that
which would be provided by a moving ground matched to tunnel speed.

oy L

Use of Wall Fressure Signatures for dngie-of-Artacs Jorpetion
Tunnel roof and floor pressures were used to determine the strengths of
horseshoe vortices, used to represent model lift effects, and thence angle-
of-attack corrections. The technique was very successful for a simple wing
but the corrections for powered models were less easy to interpret because
in many cases strong blockage effects and floor impingement were also present. g
N Some specific observations:

(8) da estimates fur unpowered cases and for low-range powered cases
were generally slightiy lower than the classical 'Glauert' |
predictions.

(9) In the low- to medium-C, range, ia values were comparable with
Williams/Butler estimates (Ref. 11) at low angle-of-attack but
increased more rapidly with a.
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(10} At nigh-C , da values determined from roof/floor pressures were
generally high. Other tendencies were as just noted.
It is not possible to judge, from the present experiments, which of the
da estimates was 'correct'. it is possible that the ‘'changing-8' effect is
i related to changes in jet-sheet geometry as angle-of-attack is increased.
Combined Biockage and Angle-of-Attack Correction Program
New developments in the wall pressure signature method include:
6 Angle of attack correction capability (see above).
o Use of fixed geometry, multi-singularity solutions which replace the
previous, iterative moving-singularity procedure (Ref. 9).
B
o Application of a least-squares approach which gives both smoothed fits
to experimental data and reduced matrix size.
P o Use of a generalized singularity routine tc generate influence
g coefficients for swept geometries at angle-of-attack, including
“"cross'' effects for non-planar cases. The latter are also applicable
to offset models.

o Generation of a combined blockage and angle-of-attack algorithm cap-
able of handling non-planar 'cross' effects (see Figure 2.11).

The following Yacts have emerged: ]

(11) The matrix method is almost an order-of-magnitude faster than
the previous iterative method when applied to a given problem.

(12) The least-squares approach works well for smoothing 'local noise!
but an additional point-rejection scheme is required for 'rogue"
points (biocked orifices, electrical 'spikes' etc). This has not
been implemented. 1

(13) The least-squares approach cannot and should not be used when ?
combining blockage and angle-of-attack solutions: iteration 1
between these is effective. . b

(14) The use of swept sincularities, at angle-of-attack produced little
change relative to corresponding straight-wing results in the
present applications (Figure 5.2(a)).

(15) For the cases investigated, the only significant coupling between
lift and blockage solutions was via trailing-vortex-induced upwash ‘
on sidewall blockage signatures. !

(16) The above coupling is significant at high § : incremental
Q's, due to wall upwash, are proportional to G -cubed.

(17) The coupling term is very sensitive to wake geometry. This
was 8 limiting factor in the present application.
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of corrected small-tunnel
disagreement is now comparable with experimental

AL
ove methods gave generally improved correlations
data with large-tunnel, free-air data. The level of

error. The following quali-
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Jer Flap Modeo Data

fications should be noted:

(18)

(19)

(20)

Fully coupled solutions gave improved results, particularly in
reducing overcorrection for blockage, only for C less than or

equal to 2.

Above C, = 2, the inclusion of the cidewall upwash term reduced
the blockage correcticn too much. 1t is suspected that the

assumption cf an undeflected vortex wake may be responsible for
this at mid-range C,'s. improved impinging-jet flow models are

requirved for high-C cases.

high C,, noted
fitted (Figure 5.7(a)),
present methods. Drag

The tendency to overcorrect lift curves at
previously for the configuration with tips
has been reduced but not eliminated by the
polar and pitching moment correlations are quite gocd.
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TABLE 1
MODEL DIMENSIONS
~ Fuselage:
t length 31.55 cm (12.42 in)
b maximum width 4 46 cm (1.76 in)
{ maximum height 7.76 cm (3.06 in)
} maximum cross-section 30.30 cm® (4.70 in?)
equivalent diameter 6.21 cm (2.44 in)
nose location FS 0.00 cm {FS 0.00 in)
fineness ratio 5.08 5.08
balance centerline location: 4
water line Lo 64 cm (16.00 in) ‘
butt line 0.00 cm 0.00 cm ]
reference point: '?
fuselage station 0.00 cm {0.00 in)
water lines 0.00 ¢cm {(0.00 in)
butt ltine 0.00 in (0.00 in) _
¢
Straight Wing:
sweep 0° 0°
quarter chord MAC location: ]
fuselage station 1.27 cm (0.50 in)
water line 38.10 cm (15.00 in) ;
butt line 12.70 cm (5.00 in) i
1
Swept Wing:
sweep 25° 26°
quarter chord MAC location:
fuselage station 6.64 cm (2.7t in)
water line 38.10 cm (15.00 in
butt line 12.70 cm (5.00 in)
Straight and Swept Wings: i
wing: X ]
area 517.00 cm- (0.556 ft~)
, aspect ratio (on nominal chord) 5.00 ‘
{ span 50.80 cm {(20.00 in) i
| . nominal chord (constant) 10.16 cm (L.00 in) }
quarter chord water line 38.10 ¢cm (15.00 in) |
twist 0° 0°¢ ;
J';
{
j
Mvgter Line 0.0 ts emall twwmel Floor with modcl on vl renteriine. {
i
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TABLE I - Continued

MODEL DIMENSIONS

. wing and tips:
z area 968.00 cm” (1.0L2 ft=)
» aspect ratio (on mominal chord) 6.00
, span 76.20 cm (30.00 in)
i nominal chord 12.70 cm (5.00 in)
| leading edge slat:
area (projected onto maximum chord):
! wing only 103.00 cm® (0.111 Ft?)
wing and tips 155.00 cm? (0.167 ft?)
b span:
' wing only 50.80 cm (20.00 in)
; wing and tips 76.20 cm (30.00 in)
5 chord (maximum) 2.03 cm {(0.80 in)
B stot width 0.127 ¢cm (0.050 i)
, - deflection 80.00
? trailing edge flap:
? area (projected onto maximum chord) 234.00 cm® (0.252 ft~)
f span 50.80 cm (20.00 in)
. chord (maximum) L. 60 cm (1.81 in)
) slot width 0.041 cm (0.016 in)
deflections (wing chord to flap

upper surface)

straight wing 76.00° 76.00°

swept wing 60.00% 60.00°

1

39




FIGURES

<D
~7




|
|

Ww@wn;—-&- TRATRTRT
-

P

”

ERTCRRVICR RN

T

Wi

r\--k;)

ot NN

. e ey

cABJJE X2)JOA PUE 83D4N0S J4Oj SBIIIATEW 3DUIN| U] 17 2anby4

Ciin - | SSLY - 9/yl*- | 8940°- SL10"- 0005°0 | 8916°0 1800° 1 280071 %€00° L 10l
§9L2°- €itg - | GGLT - | 9l1i7~ ge470 "~ 7€80°0 | 000570 891670 180071 780071 16
9lil - | SSLT - Eiig - | SSLT -] 9Lt~ 100"~ | Z€80°0 0005°0 | 891670 1go0 "1 '8 m
qsh0°~ | 9Ll - | §S8LT°- giiyt- | SS9LT- <800 - 1800 " - 7€80°0 | 0005°0 8916°0 L
GL10°- | 85HO" = | 9LLL - 98L¢ - gt - %€00°~ | 7800°- 1800° - | T£80°0 00056 19
iy 0 | 664770 | 941170 8g40°0 | S£10°0 0005°0 | 8916°0 18007 1 2780071 nE00 "1 01
6670 | €11y 0 | S9LT°0 91170 | 8%%0°0 2€80°0 | 000570 8916°0 1800 "1 2800 . 6 »
g/11°0 | 654270 | E1ix°0 56470 | 941170 1800 - | T€800 0005°0 | 891670 1800 " | 8 m
gsno°C | 941170 6647 0 | €ilg 0| 95LT70 7800 ° - 1g00°- | 2£80°0 000$°C | 891670 L
GL10°0 | 857070 | 9L11°0 G9LT°0 | €liy’0 »€00°~ | ¢800°- {1g00°- | 2¢80°0 000570 g
CEon Yy | 2609°% | 09iL7¥ 1694°% | 6E6L°¥ 0005°0 | 0958°0 1196°0 | 9886°0 £966°0 g
9102 "~ cgon 7609+ | 091L74 1691+ Ohy1°0 | 000570 0958°C 119670 | 988670 h M
56807+ | 9102 £E0n "V 750974 | 091L7¥ 88€0°0 | Onyt'0 0006°0 | 099870 1196°0 { W*
6L€0°+ | 9B80"Y | 91077 geont+ | 75097 $1iC°0 | 88¢0°0 1 OWwi’0 0005°0 | 095870 4 =
HGL0'Y | 6L80°Y 5680 "+ 910"+ £EON Y €200°0 | S110°0 | 52€0°0 | Ohyi0 0005°0 |

S Y ¢ 4 ! 5 1 ¢ ¢ , uo 138207

SIUS D1 44300 XDJIO0N

S3U2101 44903 924N0S

45°0

$37dWYX3

S et S egme———

i

L
ANK NOT FILMED

b

oy
-

PRECEDING PAC




$90) 43RW 20uUdN|ju) jo uor3ed)|ddy z'z 24nbiyg

3 m“m<

42

3/¥
A.l

4/%

10470+ | €¢5°0- | gl12°0+ | 6401+ | €9/°0~ 61872+ { 080°9~ | Sh0'g+ | 2L9°L- | L[66°¢€+
HGE 0~ | £0G 1+ | 965 1= | OKSTi+ | 11071~ 62h 0+ | 10772+ | 85679~ £99°8+ | £59°6-
_mao.o- 907°'0- | 8%6°0+ | SHi'0- | S91°'0- €6 0+ | €4L°0- | 99% €+ | 912°9- | SZL'h+
2L0°0~ | gl 0+ | 0S.°0- | 6hO'T+ | 16€° i~ €/2°0+ | gzi'0- | $91°0- | hHSZ €+ | $58°9-
950°0- | 6L0°0+ | 16170~ | €170+ | 60% 0+ 19170+ | 1€1°0- | gzz 0+ | 911'0+ | §6€ 0+
S16° 4+ | Olh %= | 990 ¢+ | 1§ 0- | 94T O+ $67°¢+ | L0S°(- | 0€9 g+ | 9Ty g- | 9L5°9+
Oly'y- | §96°g+ | 80£'9- | [0L'T+ | §ig'0- (h6"0- Th' G+ 1€6°6~ | 06y°0l 9Zh g~
9907+ | §0E°9~ | 00/ 6+ | 80L°9- | 990 T+ L€Z2°0+ | yER 1= | 956" G+ 1€6°'6- | 0£9°g+
g18°0- | L0L'T+ | g0€'9- [ 89678+ | Oly - 820 0- | #SZ 0+ | wEn 1= | TTy o+ | LOS°L-
9470+ | 81870~ | 99077+ | Oly - | S16 n+ S10°0+ | 87070~ | 1€z°0+ | [%6°0- | S6Z ¢+
€1in0 | 55420 [ 941170 | 85K0°0 | S410°0 0005°0 | 8950 | 1800°1 | 2g0c"t | €001
G500 | C1thto | S$SLTTo | 94110 | §5%0°0 7€80°0 | 000S°0 | 8916°0 | 1800°L | 2800°1
90110 | 6542°0 | €L1n 0 | SSLT'0 | 9L11°0 1800°~ | 2£80°0 | 0005°0 | 8916°0 | 1800"1
F95h0°0 | 941170 | $SLTT0 | €m0 | §5LT°0 800"~ | 1800°~ | T£80°0 | 0005°0 | §916°0
SL10°0 | §S%0°0 | 941170 | SSLT0 | €1inTO RE00 - | 2800~ | 1800°~ | TEBOO | 0205°0
WILSAS X3LYOA 3I0HSISYOM WILSAS MNIS-32¥NOS
m . a -~ . ‘.. NQ ,
. | & uen




//~F|TTED (1 TERATIVE METHOD)

o
C MEASURED
~O.61' 0]
') INPUT WALL
o PRESSURE
-0.5+ R S IGNATURE
(12 POINTS)
0. b 2
2 &
-0.37T
X
R
-O . 2,""
@
-0.1+ Q
0 I §

“MATCH!' METHOD
X X X X X X X X X X X X

& L 7S SOURCE/SINK LOCATIONS
I TERAT IVE METHOD

e

—

Y
o CALCULATED INTERFERENCE ;
a VELOCITIES %
0.201- .
{
| TERATIVE METHOD ;
A 1
\x )

WMATCH'' METHOD
0.10+

&)
o l [ : 3 : [l 3 1 i 1 rear}
T 4 L] L4 ¥ ] L T 1 1 1
-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 X/B

Figure 2.3 performance of '"match" and iterative methods
(6' x 6' normal plate in 16¢' x 23%' tunnel).
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APPERDIX - 1
PROGRAM DESCRIPTION

Capabilities:

The tunnel-wall-effect correction program is a generalized version to
handle complex pressure signatures arising from powered model tests. |t
essentially solves an inverse problem of determining the strengths of
potential singularities, the geometry of which has been specified, to satisfy
the measured pressure signatures on the tunnel boundaries. The number of
singularities can be fewer than the number of pressure signature points since

the present approach satisfies the boundary condition in least squares sense.

It is possible for the user to specify arbitrary orientations and
geometry for the potential singularities to model the actual flow as closely
as possible. In the present version of the program, no assumptions regarding
the symmetry or anti-symmetry of the influence coefficients are made to re-
solve the signature into vortex-related and source-sink-related parts. This
resolution is done iteratively during the numevical computations. At
present, the tunnel geometry however is restricted to rectangular shapes,
since the computational procedure uses imaging technique to ensure zero-
nyimal-fiow through the tunnel walls. However, alternative arrangements are

made for cases involving the 40' x 80' tunnel cross section {see below).

Normally, the difference between the observed supervelocity on the roof
and the one on the floor is used as boundary condition for obtaining the
vortex strengths. However, with powered models involving jet impingement
on tke floor, it may not be desirable to use the floor signature in the

calculations. In such cases a flag, IRF, car be set to handle only the

N =
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roof signature. Note that this requires that the cross term flags (XROSG
and KROSQ) should be turned on and that the number of iterations {1 TERMAX)
should be set larger than unity even if all singularities are placed

symmetrically with respect to the tunnel cross-section.

The program coding was developed using a VAX-16 computer. FORTRAN
statements that may cause problems in other systems are identified by the
characters VAX in columns 73 -~ 75 of those statements. When using other

systems these statements should be appropriately replaccd.

The present coding is written with the assumption that the pressure
signatures and load coefficients to be ccrrected are made available in a mass
storage file. The subroutine READCP reads in these values using FOTRAIN 1/0
unit number 10. This subroutine is written to handle specifically the
KBF model data of Lockheed-Georgia. In this case, eight rails of tunnel
wall signature data were available in a mass storage file in the form of
super-velocities rather than Cp-values. Also, since the x-wise locations
of pressure points for rail No. 7 was different from the rest of the rails,

a subroutine INTER is employed to linearly interpolate the rail-7 data to
the standard x-wise locations. Since the general user's data structure
will be different from that of Lockheed's KBF tests, these subroutines

and their calling sequences in the driver program might have to be replaced.

Preparation of Input Data

The overall sequence of computations and the effects of different flag
settings are shown in the flow chart given in figure Al. The meaning of
all input variables are explained in the next section. A typical run of the

program involves one of the two cases: (1) The required matrices are all
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INPUT FLAGS
"MAIN [INPUT"

ves

iS MATSAV > 1

A

READ IN TUNNEL GEOMETRY
AND SINGULARITY GEOMETRY

"'"GEOMETRY INPUT"

v %

GENERATE MATRICES

/ YES
< IS MATSAV = 1 >

¥

READ MATRICES FROM N
MASS STORAGE FILE o

WRITE MATRICES TO
MASS STORAGE FILE

YES

1S MATPRT > 0

PRINTOUT INFLUENCE
COEFFT. MATRICES

¥ o

T

READ A
RUN NUMBER

YES
END OF RUNS? E

[

READ IN PRESSURE
SIGNATURES ON ALL BOUNDARIES
UTEST SIGNATURE INPUTY

!

PROCESS NEXT RUN

ANALYZE SIGNATURE, APPLY CORRECTIONS

Figure Al. Flow chart for wall-pressure signhature-based

tunnel interference program.
a) Pre-analysis routines
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PRE-ANALYSIS ROUTINES

_ ¥ PRESSURE

¥ SIGNATURE

l COMPUTE 'S USING ROOF
: AND FLOOR $!GNATURES

|

TAKE QUT EFFECT OF

/ 'S FROM SIDE WALL
SIGNATURFE

o et

|

COMPUTE o'S USING
SIDEWALL SIGNATURE

.
NG il A 2 b i Lttt e e

Process Next Run

— YES

—
<15 KROSQ = 1 a—-—-—-—} |
m" ‘ i
| ITAke OUT EFFECT OF o'S
FROM (ROOF-FLOOR) -
$1GNATURE

{TER + 1}

1 i

3 i

CONTIHUE (TERATION

Set ITER:

Y

COMPUTE CENTER LINE
INTERFERENCE VELOCITY !

Y

PRINTOUT DETAILS |IF
\PRT > 0

NO

NG

1S 1TER = ITERMAX ~ 1S KROSQ = KROSG = Q

L‘CORRECT 1, LOAD COEFFTS,|

PRINT OUT SUMMARY i
Figure Al. Flow Chart for Wail Pressure Signature-Based Tunnel Interference
Proc-am. !
b) .iqnature Analysis and Data Correction.
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available and only the signatures need be processed. (2) The matrices must
be generated and saved for future use. The input sequence for these two
cases are as follows. (1) HMatrices available: Prepare Card Number i
through 3 as indicated under next section. Set MATSAV=2 in Card Number 3.
Skip Cards 4 through 9 and prepare Card No. 10. (2) Matrices must be
generated: Prepare all cards, No. 1 through No. 10. Set MATSAV=! in Card

No. 3.

Deseription of Imput Vartables
Main Input - The main input portion consists of a title, all flag

variables and a few key variables related to the model geometry as outlined

below.
——
I | TITLE l Format -- B0Al
TITLE: Test Description

2 lTERMAx] MATPRT | MATSAV l 1PRY ] KROSG | KR0SQ FCORR }JET[FCT cormat --1415

1 TERMAX: Maximum number of iterations to be performed when cross-
effect-terms are to be included in analyzing the signa-
tures. Pronram automatically sets this to unity if both

KROSG and KROSQ are zeros.

MATPRT : A non-zero value causes all influence coefficient matrices

to be printed out.

MATSAV: Three-wiy flag.
=0: Generates matrices but does not save them.
=1: Generates matrices and writes them to FORTRAN unit

Number 8.

1014
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|PRT:

KROSG:

KROSQ:

ICORR:

JETEFCT:

=2: lmplies that all required matrices are available
from a previous run. They will be read from
FORTRAN unit No. 8.

Flag for printout detail.

=0: Prints out a one page summary for each tunnel test.

=1: Prints out details for each iteratlion.

When non-zero, calculates and takes out the sidewall
upwash due to vortices in determining the u-velocity
boundary conditions on side walls from pressure

coefficients.

When non-zero takes out the cross effect of sources/
sinks from the Roof/Floor signature, before calculating
the circulation strengths of the vertices. (Note:

A non-zero value is meaningful only if sources/sinks
are not placed symmetrically with respect to the tunnel

cross section).

The centerline Inter.erence velocities at the x~location
corresponding to this index will be used In making

final corrections to angle of attack and the loads.

Non-zero if model includes a lifting jet.

(See Part 1l of the report)

3 [sArea | aws [ Bwg] Format--8F10.4

Model Reference Area used in normalizing the load

coefflicients.

102




AN e Nl b ale B AbS MM ey o m e e ) e L e L T TR

AWB Constants in the Butler-Williams Equation for correction

BWS "
to angle of attack, da = AWBACL /(1 + BWB*C ).

Geometry Input: The input of this section pertains to the tunnel geometry

I and the singularity geonmetry.

This entire section should be skipped while preparing the input in MATSAV=Z in

s the Main fnput which implies that all required matrices are already available.

b [Lavers [ 1RF | R | WW [wv ] ns | Format--1615 *
LAYERS: No. of Image Layers to be used (Recommended: 5)
IRF: Flag for determining whether floor signature is to be 3

used or not.

=0: Implies usage of roof signature only.
=1: Implies usage of (roof-floor) values.
(Note: I!f roof signature only is to be used, set KROSQ=l

and ITERMAX~1)
NR: No. of roof signature points.
(1t is assumed No. of floor signature points is sane)

NW: No. of side-wall signature points. (Both sides are

assumed to have some no. of points).

NV: No. of vortex singularities

NS: No. of source/sink singularities

: s [8 ] n ] xpvor | xpsrc | Format--8F10.4

B: Tunnel Breadth i
H: Tunnel Height %
XPVOR: Pivot point for pitching swept vortex, normalized w.r.t. 1

span (See sketch). Meaniangful only when the vortex is 1

swept .
103
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AX

AN

Pivot point for pitching swept source/sink normalized

with respect to semi-span. vefinition is similar to

XPVOR given above.

«
XPSRC:
.
6.1 XR‘ YRI LR!
6.2 XR, VR, 2R,
[ 4
@
[\
6.NR ¥R YRo | IRy
7.1 XL, YL, 2L,
. X i
7.2 2 l2 ZL2
®
®
®
7.NW [Y[Nw YLNW 2L, ]
Bivy - .

Format--8Fi0.

Format--8Fi0.

Format--8F10.

Format--8F10.

Format--8Fi0.

Formst--8F10.
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4

b
4

}

Non-dimensional coordinates,
x/B, y/B, 2/4, of the roof/

floor signature points.

Non-dimensionai cooirdinates,
x/B, y/B, z/hH of the side-wall

signature points.
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8.1 XV, YV] ZV] SBV] PS|V| ALFV‘ Format--8F10.4
I
8.2 XV2 YV2 ZV2 SBV2 PS!V2 ALFV2 Format--8F10.4
]
]
[
8. NV XVNV YVNV ZVNV SBVNV PSIVNV ALFVNV Format--3F10.4

(Xv,Yv,zv): Non-dimensional coordinate x/8, y/8, z/H of the ''roof"

point of horse-shoe vortices.

SBV: Vortex span normalized with B8
PSIV: Sweep angle for the vortex (degrees)
ALFV: Pitch angle for the vortex (degrees)
9.4 XS' YSI ZS\ SBSl PSISI ALFSl Format--8F10.4
9.2 [xsz ¥s, | zs, | sBS, | PSS, | ALFS, | Format--8Fi0.+
®
e
9.NSL XSNS YSNS ZSNS SBSNS PS|SNS ALFSNS Format--8F10.4

The definitions of these variables, defining the source/
sink locations and geometries, are similar to the ones

for vortices.

Test Signature input: This last input card contains the values of key

variables identifying the test, the signatures corresponding to which are

to be picked up from a mass storage file. This card can be repeated as many
times as desired to process all required runs. (NOTE: The user may need to
replece this section of the coding. See earlier comments about subroutines

READ(P and INTER)
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10 ITEST 1RUN

IPMIN i PMAX 1 FLOOR I ROOF IWAL]Y TWAL2 1615

YTEST:

1RUN:

IPMIN:

. FPMAX .

IFLOOR:

| ROOF :

IWALT :

IWAL2:

Tesi Number

Run Number

Point No., minimum

Point No., maximum

For the given run number the program will process data for
all points i in the range IPMIN < i < IPMAX.

Pressure signature rail no. for floor

Pressure signature rail no. for roof

Pressure signature rail no. for first sidewall.

Pressure signature rail no. for second sidewall.

Masg-Storage File Requirements:

in addition to the standard input/output FORTRAN units (#5 and #6 in the

coding), the coding employs four other mass-storage files, as explained

- below.

UNIT-7:

UNIT-8:

OQutput file. The test no., run no., point no. are written
to this file along with a summary of measured and
corrected angle of attacks and load coefficients. It

mav be used in preparing plots if so desired.

Input/Outout file.

This would centain all the input data entered in the
section '"geometr¢ Input'', all the required infiuence
coefft. matrices and the least square inverse matrices.
This file has to be generated and saved when the program
is run for the first time or whenever a change in any of
the input variable described in the section ''Geometry

laput'' is made.
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UNIT-9: Qutput file
For each data point and for each iteration this would
contain the input signatures, the recalculated boundary
conditions and the centerline interference velocity
components. |t may be used in preparing machine plots

to evaluate the program.

UNIT-10: tnput file.
For each data point, tais file should have the pressure
signature. The structure of this file is left to the

user (See comments about subroutine READCP above}.

Output Format

A compliete sample output follows the program listing. The output is
sufficiently well annotated for easy comprehension of the print out. In the
printer plots of the input signature, calculated wall supervelocities and
tunnel center line velocities, the correspondence is readily established by
looking for the same plot symbol under the tabulated data. In the table of
corrected a and load coefficients, the values labelled '"'CLASSICAL" are the
ones obtained using Butler-Williams equation. In the output annotations the
word ROOF would mean either roof alone or (roof-floor) values depending upon
how the input was arranged. Notations like '"U-Q-CL" imply '‘u-velocity due

to sources at tunnel center line."
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APPENDIX 3

Examples of Signature Analysis

CONF | GURATON: STRAIGHT-WINGED KBF MODEL, NO TIPS.
FLAP BLOWING: ¢y = 2.0
ANGLES-0F-ATTACK: 6°, 12°, 18°, 24° !
PLOTTED AFTER THIRD (1.E. FINAL) ITERATION |
E
; i
| 2 € ¢ 6 ¢ o e ;
-0.4 0.0 B -C y C.: '”6
X/B - v
1
i
;
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TEST 62, RUN US, FOINT 2 a = 6°
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TEST 62, RUN 45, POIN. 2 a = 18°

U,S10E WALL: ¢ MEASURED, g CALCULRTZD ___U,CENTER
I e - A i
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LEAST SQUARES APPROACH FOR THE NASA 40' X 80' TUNNEL
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APPENDIX 4

LEAST SQUARES APPROACH FOR THE NASA 40" X 80' TUNNEL

The image method employed by the LSQITER program cannot be applied
directly to the NASA 80' x 40' tunnel because of its ncn-rectangular cress
section. The influence coefficients required in the LSQITER program have
to be generated using an alternate approach. This Appendix presents the
results for interference factors for the L0' x 80' tunnel and explains how
these are used to construct the influence coefficient matrices required by

the LSQITER program.

Influence Factors due to an isolated singularit
J Y

The irfluence factors due to a single horse shoe vortex or a finite
length line source are obtained by using the wortex panel method described
in Ref. §. Figure Al 1 shows the theoreticai flow model used to generate
these factors. A length of 288' of the tunnel is paneilled with vortex
latices. Velocities due to a centralily located singularity are calculated
at these panels. Panel circulation strengths are then obtained which

satisfy the zero normal velocity condition at the tunnel surface.

Tunnel wall super velocities are then computed as the sum of panel-
induced and singularity-induced effects. These calculations are done at
various values of x/B at the roof, floor and the sidewall locations indicated
in figure AL.1. The center-line influence factors are computed by omitting
the effects of the central singularity and including only the panel circu-
lation effects. The supervelocities thus computed are normalized by the
factor Q/C for cases involving sources and by the factor 2Tb/C for cases
involving horse-shoe vortices, where C is the tunnel cross section area and
b is the singuiarity span. The results for sources and horse shoe vortices
of different spans and for both horizontal and vertical orientations are

presented in Tables Ab.1 through AL.6,
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Generation of influence ccefficient matrices

Using the normalized influence factors presented in the tables, influ-
ence coefficient matrices are constructed. The elements of these matrices
are of the form 3ij where a is the induced velocity due to j-th singularity
(of unit strength) at i-th point. Thus the influence factors given in the
table must be multiplied by 1/C for sources and by 2b/C for vortices for

ongoing use.

The independent variable, x/B. presented in the tables corresponds to
stream-wise locations on a local coordinate system whose origin is at the
singularity. Once the pressure ports locations are chosen and the positions
of singularities at the tunnel centerline have been selected, the relative
streamwise distance between a given singularity (j) and the pressure measure-
ment point (i)} is known. This relative distance normalized by the tunnel
breadth, B, is used as the independent variable to pick values from the

tables. It may be necessary to interpolate the tabulated values.

The LSQITER program has been written to handle the most general cases
involving singularities that could be swept, pitched and be located of f-
center in the tunnel. However, due to restrictions on time and effort the
influence factors for the 40' x 80° tunnel have been generated only for
cases where the singularities are unswept and are placed midway between
roof and floor. Consequently, many of the influence coefficient matrices
required by the LSQITER program become null matrices. The following list

defines the matrices required.

UGRF : u due to T, (Roof-floor) Non-zero
UGWL: u due to I', (Sidewall lero
WGWL : w due to I', Sidewall lero
uQwL : u due to Q, Sidewall Non-zero
UQRF: u due to Q, Roof-floor lero
uQeL: u due to Q, Tunne! Centerline Non-zero
WQCL: w due to Q, Tunnel Centerline lero
UGCL: u due to I', Tunnel Centerline lero
WGCL: w due to I, Tunnel Centerline Non-zero
158




Note, however, that the nul! matrices must be made available to the LSQITER

program with all elements set to zero

Data file structure for the influence coefficient matrices

The influence coefficient matrices generated for special cases like the
40' x 80' tunnel must be made available to the LSQITER program via FORTRAN
input UNIT NC. 16. The structure of this data file is as follows:

The first few lines of data correspond to what was described as
"Geometry tnput' in the input description of the program given in detail on
pages 103 through 105. Input line numbers &4 through 9 must be defined in
this data file accordingly. The FORMAT s for the variables are i61I5 for
integers and 5E16.8 for real numbers (see also subroutine TAPEIG in program
listing, page 132). Note that the variable "LAYERS" loses its significance
and that there can be no sweep or pitching of the singularities. Following
these lines of input, the data file must now contain the elemenets of the
matrices listed above in the same order. The elements (a;j) of each matrix
must be sequenced such that the subscript i varies more rapidly than the

subscript j. (See program listing on page 132).

Runing the LSQITER prograrm for the 40' z 30" tunnel

Once the data file containing the influence coefficient matrices is
constructed as described above, the LSQITER program can be run to process
the 40' x 80' tunnel signatures. The input on UNIT 5 is identical to the

rectangular tunnel case input described in pp. 101-106 with the following

exceptions:

1. The program must be signalied to expect the special influence coefficient
matrices. This is done by assigning a value of 3 to the flag MATSAV in
input card number 2 described on page 101. This causes the program to
read these matrices from FORTRAN UNIT 16 instead of calculating them

through imaging techniques.

2. At present the flags KROSG and KROSQ in Card-2 must be set to zero since

influence coefficients for cross effect terms are not available.
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3. Omit the Geometry Input Section

R e sk .
v . . P ¥ A
- R A

(Card-b through Card-9) as these will

now be read from the matrix data file via UNIT 16.

addition to the mass storage files described on pages 106 and 107,

s file described in this appendix must be

tn
pre-assigned to

the matrix dat
FORTRAN UNIT 16.
points, the least square
ut all matrices

For a given geonetry of singuiarities and wall pressure

inversion process needs to be done only once. The

program writes © on UNIT-8 which has to be saved for future

use. Subseguent runs can be made with MATSAV=2 and the special influence

coefficient matrix data file need not be made avaitable via UNIT-16 (See

comments on mass stroage fite, UNIT-8 on se3® 106).
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